

Article

Supplementary Material: MULTISCALE ANALYSIS AND VALIDATION OF EFFECTIVE DRUG COMBINATIONS TARGETING DRIVER KRAS MUTATIONS IN NON-SMALL CELL LUNG CANCER

Liana Bruggemann¹, Zackary Falls ¹, William Mangione¹, Stanley A Schwartz², Sebastiano Battaglia³, Ravikumar Aalinkeel², Supriya D. Mahajan²,*, Ram Samudrala¹,*

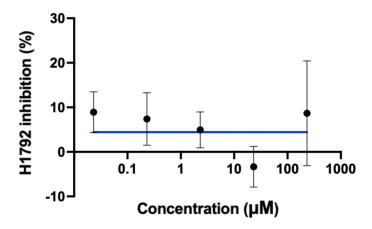
- Department of Biomedical Informatics, University at Buffalo;
- ² Department of Medicine, University at Buffalo;
- ³ Roswell Park Cancer Institute, Buffalo NY;
- * Correspondence: smahajan@buffalo.edu; ram@compbio.org

Citation: Bruggemann et al. Multiscale prediction of drug combinations targeting driver KRAS mutations.

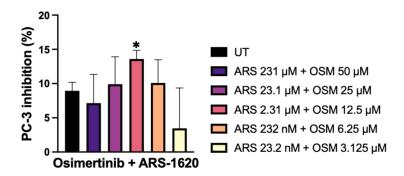
Journal Not Specified 2022, 1, 0.

https://doi.org/

Academic Editor: Firstname Lastname


Received:

Accepted: Published:


Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Submitted to *Journal Not Specified* for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

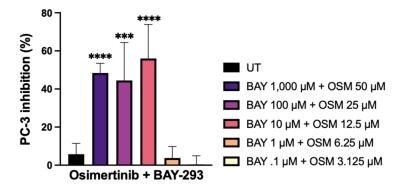

Figure S1. GI50 for BAY-293. The concentration (horizontal axis) of osimertinb is plotted against the H1792 cellular inhibition percentage (vertical axis). The GI50, or concentration required for 50% cellular inhibition, for BAY-293 was unable to be calculated with Graphpad prism 9.0, as there was not a strong enough effect. This indicates that BAY-293 is not effective at decreasing cellular proliferation in H1792 as a single agent.

Figure S2. GI50 for ARS-1620. The concentration (horizontal axis) of osimertinb is plotted against the H1792 cellular inhibition percentage (vertical axis). The GI50, or concentration required for 50% cellular inhibition, for ARS-1620 was unable to be calculated with Graphpad prism 9.0, as there was not a strong enough effect. This indicates that ARS-1620 is not effective at decreasing cellular proliferation in H1792 as a single agent.

Figure S3. Cellular proliferation for PC-3 with ARS-1620 + osimertinib. The concentration (horizontal axis) of osimertinb and ARS-1620 is plotted against the PC-3 cellular inhibition percentage (vertical axis). The third strongest treatment condition was slightly significant (p < 0.01). This indicates that the osimertinib and ARS-1620 combination does not inhibit cellular proliferation in PC-3 relative to the untreated control.

Figure S4. Cellular proliferation for PC-3 with BAY-293 + osimertinib. The concentration (horizontal axis) of osimertinb and BAY-293 is plotted against the PC-3 cellular inhibition percentage (vertical axis). The three strongest treatment conditions were all significantly higher (p < 0.001) compared to the untreated control. This indicates that while the osimertinib and BAY-293 combination shows some effect at inhibiting PC-3 cellular proliferation, it is far less than the effect observed with H1792.