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Abstract: Pharmacogenomics is a rapidly growing field with the goal of providing personalized care
to every patient. Previously, we developed the Computational Analysis of Novel Drug Opportunities
(CANDO) platform for multiscale therapeutic discovery to screen optimal compounds for any
indication/disease by performing analytics on their interactions using large protein libraries. We
implemented a comprehensive precision medicine drug discovery pipeline within the CANDO
platform to determine which drugs are most likely to be effective against mutant phenotypes of non-
small cell lung cancer (NSCLC) based on the supposition that drugs with similar interaction profiles
(or signatures) will have similar behavior and therefore show synergistic effects. CANDO predicted
that osimertinib, an EGFR inhibitor, is most likely to synergize with four KRAS inhibitors.Validation
studies with cellular toxicity assays confirmed that osimertinib in combination with ARS-1620, a
KRAS G12C inhibitor, and BAY-293, a pan-KRAS inhibitor, showed a synergistic effect on decreasing
cellular proliferation by acting on mutant KRAS. Gene expression studies revealed that MAPK
expression is strongly correlated with decreased cellular proliferation following treatment with
KRAS inhibitor BAY-293, but not treatment with ARS-1620 or osimertinib. These results indicate that
our precision medicine pipeline may be used to identify compounds capable of synergizing with
inhibitors of KRAS G12C, and to assess their likelihood of becoming drugs by understanding their
behavior at the proteomic/interactomic scales.

Keywords: multiscale drug discovery; multitargeting; translational bioinformatics; KRAS; G12C;
NSCLC; tyrosine kinase inhibitors; KRAS inhibitors; drug synergy

1. Introduction

Lung cancer is the most lethal cancer in the world, with non-small cell lung cancer
(NSCLC) accounting for about 80% of cases [1]. The proto-oncogene Kirsten rat sarcoma
homolog KRAS is a member of the RAS family of oncogenes and is the most commonly
mutated across all cancers [2]. Somatic nonsynonymous mutations in the KRAS gene
cause single amino acid substitutions in the small GTPase KRAS it encodes [2]. These
mutations confer resistance to many available therapies for NSCLC, generally lead to a
more aggressive disease progression, and lack viable treatment options [3]. Despite decades
of research attempting to directly inhibit KRAS, little progress has been made due to its high
binding affinity with GTP at the active site, and lack of other available binding pockets [3].

A specific KRAS protein mutation, glycine to cysteine at residue 12 (G12C), occurs in
about 13% of NSCLC patients [3]. A new class of irreversible covalent inhibitors has been
shown to bind the cysteine 12 in the KRAS G12C mutant, which alters its conformation and
decreases the ability of the protein to exchange GDP for GTP, thereby increasing affinity
for its inactive GDP-bound form [3]. This leads to a decrease in cellular proliferation,
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as when KRAS is in the GDP-bound form it is unable to trigger downstream proteins
involved in cellular proliferation and survival such as Raf-MEK-ERK and PI3K-AKT-mTOR
(Figure 1) [1]. Variations of KRAS G12C inhibitors are now being developed by Amgen,
Mirati, J&J and Wellspring Biosciences, Sanofi, and X-Chem [3]. Determining which of
these inhibitors is most effective for patients with NSCLC and other cancers with KRAS
G12C mutations, and whether combining these inhibitors with other drugs leads to better
treatment outcomes, are key emerging questions.

Figure 1. EGFR, SOS1, RAS and downstream pathways with drugs of interest and mechanisms
of action. KRAS G12C undergoes biochemical changes that allow it to remain in its GTP-bound
active state for longer periods of time, versus the inactive GDP-bound state: Increased time in the
GTP-bound active state leads to increased activation of downstream signaling cascades involving
Raf-MEK-ERK and PI3K-AKT-mTOR which are involved in cellular proliferation and survival [1].
Here we show the targets for inhibitors analyzed in this study, BAY-293, ARS-1620, osimertinib,
and relevant downstream signaling pathways. BAY-293 targets the KRAS G12C-SOS1 interaction,
which decreases the exchange of GDP to GTP involved in activating KRAS G12C. ARS-1620 targets
GDP-bound KRAS G12C, and decreases the ability of SOS1 to exchange GDP to GTP. Osimertinib,
predicted by our computational platform during the course of this study, acts upstream of KRAS
G12C to inhibit EGFR, specifically the resitance-causing T790M mutation. It has also demonstrated
activity against wild type EGFR and HER2, which have been implicated in adaptive resistance to
KRAS G12C inhibition through re-activation of scaffold proteins. Although these three inhibitors
(ARS-1620, BAY-293, osimertinib) have differing methods of action, it is possible they may synergize
through shared targets that are as yet unknown. Created with BioRender.com.

Wellspring Biosciences first developed ARS-853, a KRAS G12C specific covalent in-
hibitor, based on pioneering work by Shokat and colleagues identifying KRAS-G12C
specific allosteric inhibitors [3,4]. This compound then evolved to ARS-1620 through a new
interaction with the histidine at position 95 (H95) which increased potency [3]. ARS-1620
was further optimized by exploiting a surface groove on KRAS G12C, made possible by an
alternative orientation of H95, giving rise to the compound AMG-510 aka sotorasib [3]. Sim-
ilarly, Mirati Therapeutics used a structure-based approach to design MRTX1257, followed
by MRTX849 aka adagrasib, which was granted FDA approval shortly after sotorasib [3].
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In addition to KRAS G12C specific inhibitors, another class of drug is being developed
to target the interaction between KRAS and son of sevenless homolog 1 (SOS1) [5]. As part
of the KRAS scaffold, along with Src homology region 2 domain-containing phosphatase
2 (SHP2), SOS1 aids in the transformation of the GTP-bound active form of KRAS to
the inactive GDP-bound form. Since the active form of KRAS leads to increased cellular
proliferation, and KRAS mutations such as G12C increase the time the protein remains
active, targeting this interaction is another key avenue for intervention [5]. BAY-293 has
emerged as a KRAS-SOS1 interaction targeting inhibitor that has shown effectiveness
in targeting both wild type and mutant KRAS-SOS1 interactions, and has demonstrated
synergy with ARS-853 in targeting KRAS G12C in vitro [5].

1.1. Upstream and Downstream Inhibitors for Treatment of KRAS-Mutant NSCLC

Recent studies have shown that second generation epidermal growth factor receptor
(EGFR) inhibitors may also be used to treat KRAS-mutant cancers such as NSCLC [6].
EGFR is located upstream of the KRAS pathway and commonly contains difficult to treat
mutations occurring in NSCLC, many conferring drug resistance to known inhibitors [6].
First generation inhibitors such as erlotinib and gefitinib are only capable of targeting EGFR
and EGFR mutations; however, KRAS mutations allow for increased expression of ErbB2
and ErbB4 and therefore are not susceptible to EGFR inhibition alone [6]. Historically,
EGFR inhibitors have not been effective against KRAS-mutant cancers; however, second
generation inhibitors have shown promise in treating both KRAS- and EGFR-mutant tumors
by targeting all members of the ErbB family of proteins (EGFR/ERbB1, HER2/ErbB2,
HER3/ErbB3, HER4/ErbB4) [6].

As first, second, and third generation EGFR/ErbB inhibitors have distinct mechanisms
of action, it is necessary to determine which of these may be shared with KRAS G12C
inhibitors such as ARS-1620 [6]. Erlotinib and gefitinib are first generation EGFR inhibitors,
capable of binding wild type and mutant EGFR proteins [7]. Unfortunately, patients de-
velop resistance to first generation EGFR inhibitors over time by acquiring the threonine to
methionine mutation at position 790 (T790M) [8]. In response to these mechanisms of resis-
tance, second generation inhibitors afatinib and dacomitinib were developed specifically
to simultaneously and irreversibly inhibit multiple ErbB receptors [8]. Although afatinib
and dacomitinib showed greater effectiveness than gefitinib and erlotinib, both are still
unable to inhibit cancer caused by resistance to the T790M mutation [7]. To address this,
osimertinib was developed to bind to EGFR T790M, while sparing wild type EGFR, and
has shown success in treatment as both a first and second line option for EGFR-mutant
NSCLC [8].

Targeting signaling cascades downstream of KRAS such as RAF-MEK-ERK kinases
with MEK inhibitors has also been used to treat KRAS-mutant NSCLC [9]. Unfortunately,
this approach yielded limited success due to resistance driven by increased activation of
ErbB2 [6,9]. However, treating KRAS G12C cells with second generation EGFR inhibitors
in combination with KRAS G12C inhibitors may mediate resistance mechanisms [10].
Specifically, resistance to ARS-1620 was mediated by treatment with the second generation
EGFR inhibitor afatinib [10]. Further analysis revealed that this resistance is modulated by
EGFR and aurora kinase A (AURK) signaling [10]. The relationship between AURK and
EGFR to these resistance mechanisms, and whether third generation EGFR inhibitors such
as osimertinib may show similar effects is yet to be determined. Recently, overexpression
of HER2 specifically has been shown to cause resistance to KRAS G12C inhibitors such as
sotorasib/AMG-510, which can in turn be mediated with SHP2 inhibitors [11].
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Osimertinib has been shown to exhibit increased ability to target ErbB2/HER2, when
compared to second generation EGFR inhibitors in mouse models of HER2 [12]. Since
osimertinib has demonstrated the capacity to target ErbB2 as well as EGFR mutations,
the combination of osimertinib and ARS-1620 may also alleviate ErbB2 driven resistance
mechanisms. Finally, osimertinib has a more favorable toxicity profile than first generation
and second generation EGFR inhibitors, making it a potentially stronger candidate for drug
combination [8]. Figure 1 illustrates the key pathways both upstream and downstream that
are relevant for targeting KRAS G12C.

1.2. Computational Approaches for Generating Drug Candidates

Computational studies provide valuable insights into drug behaviors and functions,
which is useful for predicting new drug candidates, particularly for oncogenic muta-
tions lacking treatment options [10,13–19]. Growing research has demonstrated that
drugs likely target multiple protein receptors beyond their approved use, which lends
itself to the concept of drug repurposing where the same drug approved for one indica-
tion/disease is used for another [18,19]. Computational analysis of drug repurposing at
the proteomic/interactomic scale may yield insights into specific pathways involved in
complex indications/diseases such as NSCLC, as well as other cancers. This is particu-
larly relevant as drug discovery utilizing traditional methods, such as high throughput
screens, has slowed within the pharmaceutical industry [20,21]. Drug repurposing aids
in the speed of drug development by finding new uses for existing drugs with known
safety profiles [20]. The Computational Analysis of Novel Drug Opportunities (CANDO)
platform for multiscale therapeutic discovery, repurposing, and design has been developed
to overcome current issues in drug discovery, such as the simultaneous optimization of
efficacy and safety, by using a holistic multiscale approach to characterize drug/compound
behaviors and functions [21–34].

A typical pipeline in CANDO calculates interactions between every compound and
every protein from large libraries to generate a compound-protein interaction matrix
where each compound (each row in the matrix) is described by a set of interactions to
all the proteins (each column in the matrix) in a proteome. These compound-proteome
interaction signatures are compared and analyzed to assess behavioral/functional similarity
of drugs/compounds known to be effective for an indication/disease. The goal of our study
was to apply CANDO towards predicting novel drugs/compounds capable of synergizing
with known KRAS inhibitors, and validate these findings using human cancer cell lines.
To this end, we compared compound-proteome interaction signatures to compounds that
are known to be effective against particular mutants of KRAS, which were then used to
generate novel predictions of compounds and synergies that may be effective against
KRAS-mutant driven cancers driven cancers and validated (Figure 2). Our predictions
using CANDO indicated that EGFR inhibitors synergize with KRAS G12C inhibitors, and
that osimertinib had the highest likelihood of synergizing relative to other EGFR inhibitors.
Validation studies using cytotoxicity assays confirmed our predictions that osimertinib
shows a synergistic effect when combined with known KRAS G12C inhibitors (Section 3.7).
Gene expression studies confirmed KRAS and mitogen-activated protein kinase (MAPK) are
key targets for controlling prosurvival signals in KRAS G12C cells, as levels of expression
of both were significantly altered following treatment with our predicted compounds [35].
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Figure 2. Precision drug discovery pipeline within CANDO for generating novel drug leads for KRAS
G12C NSCLC. We created a pipeline within the previously developed CANDO platform [21–34]
to generate drug candidates based on novel applications of existing drugs/compounds using four
approved or investigational treatments for KRAS G12C NSCLC (AMG-510/sotorasib, ARS-1620,
MRTX-849/adagrasib, BAY-293). Our hypothesis is that these drugs/compounds may be used
to identify other behaviorally similar drugs/compounds that could (also) be effective against
KRAS G12C NSCLC, either individually or synergistically. Interaction scores between every
compound in our 13,218 drug/compound library and every protein in our 5317 human pro-
teome library were first calculated using bioanalytical docking. This resulted in a compound-
proteome interaction signature for each drug/compound, i.e., a vector of 5317 scores that de-
scribes the functional behaviour of the compound, shown here with proteins depicted horizon-
tally, and compounds vertically as an interaction matrix (Section 3.3). Compound-compound
behavioral similarity was then calculated by comparing individual compound-proteome interac-
tion signatures using the cosine distance and benchmarked with known data to ensure optimal
performance (Section 3.4). Putative drug candidates were then generated from the drugs/compounds
with the most similar pairwise interaction signatures to those belonging to investigational and
approved treatments of KRAS G12 NSCLC (Section 3.5). Signature comparison results indicated
that osimertinib was most similar to KRAS inhibitor BAY-293, and highly similar to KRAS G12C
inhibitor ARS-1620 and other KRAS inhibitors. Finally, these candidates were used either individu-
ally or in combination, for validation in human cancer cell lines (Sections 1 and 3.7). Created with
BioRender.com.

2. Results and Discussion
2.1. Benchmarking and Drug Candidate Generation Using the CANDO Platform

CANDO v2.5 and its pipelines were applied as described in Figure 2. The average
indication accuracy using CANDO v2.5 was ≈22–44% for the top10 through top100 cutoffs
for 1650 indications with at least two approved drugs [21,31]. In contrast, the random
control average values for these four cutoffs were ≈5–28% across the same indications. For
NSCLC, with 47 approved drugs, the indication accuracy was ≈60–91% for the four cutoffs.
Given that the indication accuracy for NSCLC was ≈60% at the top10 cutoff, over ten times
the corresponding random control value of ≈5%, we expected our accuracy for generating
mutation specific NSCLC putative candidates to be similarly high.

We first applied the CANDO platform to compare a subset of four KRAS inhibitors
to our experimental compound/drug library, which identified EGFR inhibitors as being
among the top most similar compounds. The literature confirmed this result, specifically
showing effectiveness of second generation EGFR inhibitors against KRAS-mutant tumors.
Therefore we pursued EGFR inhibitors as compounds of interest for targeting KRAS G12C
NSCLC [6]. Compared to four other available EGFR inhibitors in our entire compound
library, osimertinib was ranked as most similar to the four KRAS inhibitors overall, and
ranked first in similarity to KRAS inhibitor BAY-293 (Figure 3). Taken together, these
results suggested potential synergy between KRAS G12C inhibitors and EGFR inhibitors,
particularly osimertinib, which led to our in vitro validation studies.
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Figure 3. KRAS and EGFR inhibitor similarity scores and rankings using the CANDO platform.
Following the generation of the compound-proteome interaction signatures for all drugs/compounds
in our library, the similarity scores and rankings were calculated between four KRAS inhibitors
AMG-510/sotorasib, ARS-1323 (racemate of ARS-1620), MRTX-849/adagrasib, BAY-293, and all other
compound signatures. Overall, we found high similarity between our four KRAS inhibitors and
EGFR inhibitors erltotinib, gefitinib, afatinib, dacomitinib, and osimertinib using the cosine distance
between the interaction signature vectors (Section 3.5). The left panel shows the average similarity
scores (vertical axis) for the five first, second, and third generation EGFR inhibitor interaction
signatures (colored bars) compared to the signatures of four KRAS inhibitors (horizontal axis). The
average similarity scores for each EGFR inhibitor signature compared to those from our entire
13,217 drug/compound library are also shown as a control. The corresponding pairwise signature
similarity rankings (vertical axis) are displayed on the right panel. Overall, KRAS G12 inhibitors
were predicted to be highly similar to EGFR inhibitors relative to the average drug/compound in our
library. Osimertinib, a third generation EGFR inhibitor, was calculated to be the most similar to all
the four KRAS inhibitors relative to the other EGFR inhibitors, and was ranked first when compared
to BAY-293 relative to the entire compound library. Created with BioRender.com.

2.2. Validation of Osimertinib, ARS-1620, and BAY-293

Table 1 shows the two cell lines used for validation. NCI-H1792 used as the ex-
perimental cell line as it contains the KRAS G12C mutation, and PC-3 was used as the
KRAS wild type/control cell line. H1792 was chosen specifically as it has exhibited re-
sistance to ARS-1620 alone, and therefore is an ideal candidate for testing whether EGFR
inhibitors in combination with ARS-1620 may mediate this resistance [35]. As predicted
with the aid of CANDO, KRAS G12C inhibitor ARS-1620 combined with osimertinib
and pan-KRAS inhibitor BAY-293 combined with osimertinib showed synergistic effects
on decreasing cellular viability in H1792. Neither KRAS inhibitor was effective at de-
creasing cellular proliferation of H1792 alone, so GI50 values could not be determined
(Figures S1 and S2). Figure 4 shows the GI50 for osimertinib with the H1792 cell line. We
did not observe as strong effects on cellular proliferation with the above combinations of
inhibitors when tested on the PC-3 cell line, indicating a decreased effect on KRAS wild type
(Figures S3 and S4).There were no significant effects on PC-3 between the untreated control
and the treatment conditions with the combination of ARS-1620 and osimertinib. However,
the combination of BAY-293 and osimertinib did show a significant increase in inhibition for
the highest three treatment conditions, albeit a much smaller increase compared to the effect
observed with H1792. We believe this is due to BAY-293 targeting the interaction between
WT-KRAS and SOS1, as well as mutant KRAS and SOS1. None of the other EGFR/ERbB
inhibitors tested (erlotinib, gefitinib, afatinib, dacomitinib) showed synergy with ARS-1620,
or effectiveness in decreasing H1792 cellular proliferation alone.
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Table 1. Cell lines used for validation. The name of the cell line, tumor type, and the mutation status
are shown. NCI-H1792 was used for the experimental cell line, since it contains the target KRAS
G12C mutation, and PC-3 was used as the control cell line since it contains wild type KRAS.

Cell Lines Histology KRAS Exon 2 Mutation Status

NCI-H1792 Adenocarcinoma KRAS G12C, homozygous
PC-3 Adenocarcinoma KRAS wild type

These findings are unexpected, especially since afatinib has been shown to demonstrate
synergy with adagrasib/MRTX-849 in other studies using in vitro validations [2]. However,
drug synergies may vary depending on which KRAS G12C inhibitor is used, and since
our experiments were conducted with ARS-1620 this may account for the difference in
results. Our research shows that osimertinib has the ability to decrease H1792 proliferation
significantly alone as well as in combination with KRAS inhibitors ARS-1620 and BAY-
293, respectively, (Figures 4–6), as hypothesised by the CANDO platform. This indicates
osimertinib may be more effective at inhibiting KRAS G12C NSCLC than other EGFR
inhibitors such as afatinib, with greater capability to synergize with KRAS inhibitors [35].

Figure 4. GI50 for osimertinib. The concentration (horizontal axis) of osimertinb is plotted against the
H1792 cellular inhibition percentage (vertical axis). The concentration required for 50% cellular inhi-
bition (GI50) using osimertinib was calculated to be 12.54 µM using Graphpad prism 9.0. Although
osimertinib was designed to target EGFR-mutant cell lines, here we show that it is also capable of
inhibiting KRAS G12C cells as inferred from the predictions made by the CANDO platform. Created
with BioRender.com.
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Figure 5. Evaluation of the ARS-1620 and osimertinib drug combination. The main heatmap panel
outlined in black shows H1792 cell inhibition as a percentage normalized using untreated controls
ranging from 0% (dark blue) to 100% (yellow) for different concentrations. ARS-1620 and osimertinib
by themselves are shown on the left and the bottom, respectively, (both outlined in red). This
shows that although H1792 did not respond strongly to ARS-1620 alone, a synergistic effect on
cellular inhibition was observed when combined with osimertinib as hypothesised from the CANDO
predictions. Created with BioRender.com.

Figure 6. Evaluation of the BAY-293 and osimertinib drug combination. The main heatmap panel
outlined in black shows H1792 inhibition as a percentage normalized using untreated controls
ranging from 0% (dark blue) to 100% (yellow) for different concentrations. BAY-293 and osimertinib
by themselves are on the left and bottom, respectively, (both outlined in red). This shows that
although H1792 did not respond strongly to BAY-293 alone, a synergistic effect on cellular inhibition
was observed when combined with osimertinib. Created with BioRender.com.

2.3. Gene Expression Confirmation of Synergy

Figure 7 shows the results of the QPCR experiments to investigate the genetic compo-
nents of the synergies we found using osimertinib with ARS-1620 and BAY-293. Previous
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QPCR data has been used similarly for combinations of PI3K inhibitors and KRAS G12C
inhibitors, which have also shown synergistic capability in inhibiting cellular proliferation
of KRAS G12C cell lines [35]. These results showed that MAPK reactivation is a key compo-
nent of KRAS inhibitor drug resistance [35]. Here, we used increased DUSP-6 mRNA levels
an indicator of MAPK activation as it has been well-established [36]. Suppression of KRAS
mRNA was also evaluated to determine the effect on KRAS gene expression following
direct inhibition of KRAS G12C [35].

Surprisingly, our QPCR results showed a significant increase in DUSP-6 expression fol-
lowing treatment with osimertinib alone, which may be due to compensatory mechanisms
following protein inhibition. However, treatment with BAY-293 significantly decreased
DUSP-6 expression levels compared to the control. Similarly, KRAS levels were signifi-
cantly decreased relative to the control when treated with BAY-293 alone as well as BAY-293
and osimertinib combined. The combination of ARS-1620 and osimertinib, as well as
ARS-1620 alone, was not significantly different compared to the untreated condition, for
either gene of interest. The lack of KRAS inhibition with ARS-1620 and osimertinib is
less surprising than the lack of DUSP-6 inhibition, since previous results also showed that
KRAS expression did not predict response to treatment with ARS-1620 alone [35]. Since
BAY-293 most significantly decreased levels of DUSP-6 mRNA, this suggests that BAY-293
works primarily through suppressing MAPK, while osimertinib and ARS-1620 inhibit
KRAS cellular proliferation through inhibiting additional downstream mechanisms that
are yet to be investigated.

Figure 7. Gene expression analysis of synergistic drug combinations. The top two panels show
KRAS and DUSP-6 expression levels upon treatment with ARS-1620, osimertinib, and combination at
24 h; similarly, the bottom two panels show KRAS and DUSP-6 expression levels upon treatment
with BAY-293, osimertinib, and combination at 24 h. Treatment with osimertinib significantly in-
creased DUSP-6 expression relative to the untreated control (p < 0.01; **). There were no significant
differences between any of the treatment conditions of KRAS expression levels for the ARS-1620
and osimertinib conditions. However, treatment with BAY-293 significantly decreased expression
of DUSP-6 comparedto the untreated control (p < 0.001; ***). Treatment with BAY-293, and BAY-293
combined with osimertinib, also significantly decreased the expression of KRAS compared to the
untreated control, albeit to a lesser extent (p < 0.01). These findings indicate BAY-293 inhibits H1792
proliferation through suppression of MAPK as measured by decreased DUSP-6, while osimertinib
and ARS-1620 inhibit proliferation through mechanisms that need to be further elucidated. Created
with BioRender.com.
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2.4. Limitations and Future Directions

Drug/compound concentrations used were partially derived from previously identi-
fied GI50/IC50 values [5,35,37–39] but non-conformity in compound libraries, time points,
and cell lines used makes direct comparisons difficult. Investigation with lower doses of
compounds in the nM–pM range, along with other KRAS G12C mutant cell lines such
as H358, is planned for future work as these concentrations are more relevant for use in
patient studies. Additionally, experiments at the 72 h and 96 h time points with H1792 and
other cell lines are planned.

Although our QPCR data showed the expected decrease of MAPK activation with the
combination of osimertinib and BAY-293, we did not see the same trend for osimertinib and
ARS-1620. More studies are needed to investigate the potential mechanisms of action for
the synergy between osimertinib and ARS-1620. Specifically, ErbB2 silencing experiments
with si-RNA are needed to examine the effects of ARS-1620 treatment on cells with ErbB2
knockdown, and other genes of interest such as SOS1. Altogether, our research shows the
combination of osimertinib and KRAS inhibitors is a promising new potential treatment for
KRAS G12C NSCLC, as well as KRAS G12C driven cancers in general.

3. Materials and Methods
3.1. CANDO Drug Discovery, Repurposing, and Design Platform

Figure 2 illustrates the precision medicine pipeline implemented within the CANDO
platform for generating and validating putative NSCLC candidates. The CANDO platform
for multiscale therapeutic discovery, repurposing, and design generates novel drug predic-
tions and repurposes existing drugs for every indication by overcoming the limitations of
traditional single target approaches [21–34]. One of the key tenets of CANDO is drugs that
are safe for human use exert their therapeutic effects and undergo the process of absorption,
dispersion, metabolism, and excretion (ADME) by interacting with multiple targets. Addi-
tionally, due to their size small molecule drugs are likely to engage in off-target interactions,
i.e., have low energy of binding by chance to macromolecules not implicated in efficacy
and/or ADME. CANDO exploits this inherent multitargeting nature of small molecules
by computing interaction signatures that describe compound behaviour at multiple scales.
Putative drug candidates are generated via a series of distinct pipelines that can be cus-
tomized for the user’s individual needs, such as precision medicine in this case. The default
pipeline first generates protein-compound interaction scores between every compound
and every protein in their corresponding libraries using various algorithms for interaction
scoring, such as those based on molecular docking and/or machine learning. Once the
interaction scores have been calculated, drug candidates are generated by comparing the
interaction signature of the query compound to that of every other compound. This com-
parison yields rankings based on the signature similarity between the ranked and query
compound, with the hypothesis that higher ranked compounds are more likely to exhibit
similar biological behavior to the query compound [21–34]. CANDO and its components
have been extensively validated in laboratory studies for drug discovery, repurposing, and
design [21,22,24,25,30,40–48]; however, this is the first instance of applying CANDO to
precision oncology.

3.2. Compound and Protein Library Curation

Our compound library comprises 13,218 total drugs (2449 approved drugs and 10,769
investigational/experimental compounds), curated primarily using Drugbank [49]. Cur-
rently approved drugs and experimental compounds to treat KRAS G12C NSCLC, such as
AMG-510/sotorasib, ARS-1620, MRTX-849/adagrasib, BAY-293 were manually added to our
compound library to generate the most accurate novel compound and synergy predictions.

Three proteome libraries were used in this study: (1) 5317 human-specific proteins
from the Protein Data Bank (PDB) [50] were curated to represent the “Human” proteome,
as we are interested only in drugs capable of targeting KRAS G12C in humans. (2) The
Cancer Genome Atlas’s (TCGA) study of lung adenocarcinoma was used to identify a list
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of eighteen genes that were mutated with statistical significance, based on an analysis of
230 lung adenocarcinoma patient samples [51]; the corresponding protein library was used
to screen our initial predictions based on relevance to NSCLC, to increase our accuracy
for novel drug predictions and repurposing of existing NSCLC treatments for KRAS
mutations (“TCGA NSCLC”). (3) Additionally, the Kyoto Encyclopedia of Genes and
Genomes (KEGG) [52–54] was used to identify genes both upstream and downstream of
KRAS that are commonly affected by mutations in the oncogene. This yielded a further
subset of nine genes whose corresponding proteins are key targets for KRAS-mutant
NSCLC to further refine our predictions ( “KEGG”).

3.3. Compound-Protein Interaction Scoring Using a Bioanalytic Docking Approach

The bioanalytic docking (BANDOCK) compound-protein interaction scoring protocol
was used to compute scores between every compound and every protein in the correspond-
ing libraries [22,23,31]. BANDOCK uses the COACH algorithm to identify binding sites
for each protein [31,55], which is based on the similarity of a given compound to known
ligands in solved protein structures. For a given protein and ligand pair, COACH outputs
a set of predicted ligands for each binding site, which BANDOCK then uses to compare to
the compounds of interest via chemical fingerprinting, to assess for the presence or absence
of shared chemical substructures using RDkit [56]. The maximum resulting Tanimoto
coefficient (i.e., the strongest match) and its associated binding site score are then used
to compute the final interaction score for the compound-protein pair, depending on the
scoring protocol parameters [31]. For each compound, this process is repeated for every
protein in the proteome library resulting in a vector of interaction scores known as the
compound-proteome interaction signature.

3.4. Benchmarking

The benchmarking protocol in CANDO involves comparing the signatures of every
approved compound against each other and ranking them by their similarity [21–34]. These
rankings are then assessed to see if the drugs approved to treat a particular indication
are observed within specific cutoffs. This protocol is run iteratively for every indication
(2257 in v2+) with at least two approved drugs (1650), and the resulting accuracy scores are
averaged across all indications. We use numerous metrics to assess performance [21], but a
primary intuitive one is the indication accuracy which is calculated based on the number of
times an approved drug for a given indication is observed within various cutoffs, such as
top10, top25, top50, and top100. This indication accuracy is calculated using the equation
c/d × 100, where c is the number of times at least one other drug approved for the same
indication was recovered for a given cutoff, and d is the total number of drugs approved
for that indication [21,31]. This process is repeated for every indication in our indication
library and averaged to obtain an overall average indication accuracy.

3.5. Putative Drug Candidates

To generate our putative drug candidates, pairwise similarity scores were calculated
between the compound-proteome interaction signatures of known KRAS inhibitors and all
other compound-proteome signatures. These candidates were then ranked by similarity of
their interaction signatures, calculated using the cosine distance between the two vectors
representing the signatures. Compounds with more similar signatures are hypothesized
to exhibit more biologically similar behavior. We therefore used these similarity scores to
known NSCLC drugs such as AMG-510/sotorasib and MRTX-849/adagrasib, in addition
to experimental compounds such as BAY-293 and ARS-1620, to identify candidates that
may be capable of treating KRAS G12C NSCLC in addition to their intended use. We also
identified other drugs/compounds in our library that may be repurposed for treating KRAS
G12C NSCLC. The most promising drug/compound predictions were further investigated
via in vitro validation studies.
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3.6. Cell Lines and Compounds Chosen for Validation

Human cancer cell lines NCI-H1972 (CRL-5908™, non-small cell lung cancer adeno-
carcinoma), and PC-3 (CRL-1435™, a grade IV prostatic adenocarcinoma) were obtained
from American Type Culture Collection and were grown in F-12K Medium (Kaighn’s Mod-
ification of Ham’s F-12 Medium) and RPMI 1640 media, respectively, supplemented with
10% fetal bovine serum, 100 µmL penicillin, and 100 µg/mL streptomycin. Cultures were
maintained at 37 ◦C in a humidified incubator with 5% CO2. KRAS inhibitors ARS-1620,
BAY-293, and EGFR inhibitors erlotinib, gefitinib, afatinib, dacomitinib, and osimertinib
were purchased from Selleck Chemicals (based on the predictions made in Section 3).
Drug/compound concentrations used were partially based on reported values from the
literature [5,35,37–39].

3.7. Cytotoxicity Assays

We examined the effects of ARS-1620 and BAY-293 as well as the EGFR inhibitors
erlotinib, gefitinib, afatinib, dacomitinib, and osimertinib on cell viability by perform-
ing dose and time kinetic studies using the CCK-8 assay (Cat #CK04 Dojindo Molecular
Technologies). The CCK-8 assay uses colorimetric detection for the determination of cell
viability in cytotoxicity assays. The water-soluble tetrazolium salt, WST-8, is reduced by
dehydrogenase activities in cells to produce a yellow-color formazan dye, which is soluble
in the tissue culture media. The amount of the formazan dye, generated by the activity
of dehydrogenases in cells, is directly proportional to the number of living cells. Briefly,
cells were seeded at a density of 10,000 cells/100 µL/well in 96 well plates in complete
growth medium. Cells were incubated with the desired varying drug concentration for
24–48 h. No drug (untreated cells) was used as the control. At the end of the incubation
period, media was then replaced with 100 µL phenol-red free media and 10 µL of CCK-8
solution followed by a two hour incubation. The absorbance was then read at 450 nm using
a spectrophotometer (Biotek, Winooski, VT, USA) plate reader. All drug concentrations
were tested in triplicate.

3.8. Gene Expression Assays by QPCR

The effects of ARS-1620, BAY-293, and osimertinib on KRAS and the dual specificity
phosphatase-6 (DUSP-6) gene expression in NCI-H1792 cells were examined by RT-qPCR
to determine the genetic component of our viability results. Total RNA was extracted
from the tumor cell lines using the TRIzol™ reagent (Invitrogen, Carlsbad, CA, USA), as
per protocol provided by manufacturer. RNA quantity and purity were assessed via a
260/280 nm ratio using a NanoDrop2000™ (Thermo Fisher Scientific, Wilmington, DE,
USA). 500 ng of total RNA was reverse transcribed using the All in One cDNA synthesis
Supermix™ (Bimake.com) to obtain cDNA for QPCR. QPCR was performed using the
AzuraView GreenFast qPCR blue Mix LR™, a ready to use PCR SYBR green master mix of
fluorescent dye for measuring double stranded DNA (Azura Genomics Inc.). QPCR was
carried out using the following conditions: 95 ◦C for 3 min, followed by 40 cycles of 95 ◦C for
40 s, 60 ◦C for 30 s, and 72 ◦C for 1 min; the final extension was at 72 ◦C for 5 min. Validated
primers were obtained from Integrated DNA technologies and the final primer concentra-
tion used in the PCR was 0.1 µM. The primer sequences of the DUSP6 and KRAS2 gene
were as follows: DUSP-6 forward primer: 5′-CGACTGGAACGAGAATACGG-3′, DUSP-
6 reverse primer: 5′-TTGGAACTTACTGAAGCCACCT-3′; KRAS2 forward primer: 5′-
TGTTCACAAAGGTTTTGTCTCC-3′, KRAS2 reverse primer: 5′-CCTTATAATAGTTTCCA
TTGCCTTG-3′. The housekeeping gene β-Actin was used as the control. Relative gene
expression of DUSP6, KRAS, β-actin mRNA in control versus drug treated samples were as-
sessed in NCI-H1792 cells. Gene expression was calculated using the comparative threshold
cycle (Ct) method. After the Ct of each sample was determined, the relative level of a tran-
script (2∆Ct) was calculated by obtaining ∆Ct (test Ct− β-Actin Ct), and the transcription ac-
cumulation index ∆∆Ct = (CtTarget − Ctβ-actin)treated − (CtTarget − Ctβ-actin)untreated [57].
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3.9. Statistical Analysis

All experimental data were analyzed using Graph.Pad Prism 9.0 (GraphPad Software
La Jolla, CA, USA). Results are expressed as mean ± standard deviation (SD). The student
t-test was used for comparisons between control and treated groups. Statistical significance
was set at p value < 0.05. The drug concentration (µM) required to inhibit 50% net of cell
growth (growth inhibition at 50% or GI50) was calculated using GraphPad Prism Software
version 9.0 using the functions log(inhibitor) or inhibitor depending on whether a log-scale
dilution was used, versus a response-variable slope (four parameters). Values were capped
at the maximum drug dose used. Synergy was quantified using CompuSyn Software
demonstrating at least a two fold shift in potency between single and combination drug
doses [58].

4. Conclusions

Our research demonstrates a novel application of the CANDO platform for identify-
ing putative drug candidates targeting specific oncogenic mutations. Here we show that
even drugs designed to target specific protein mutations, such as osimertinib, are capable
of targeting multiple proteins, which has been corroborated in the literature [12,37]. As
shown previously, our platform succeeded in predicting synergies between osimertinib
and ARS-1620 as well as osimertinib and BAY-293 using a multiscale approach. Therefore,
our precision medicine pipeline within CANDO may be used in the future to predict both
existing drugs and novel compounds capable of targeting single nucleotide variations,
and supplement traditional high-throughput and fragment-based experiments. This ap-
proach allows for additional safety measures for patients by utilizing existing drugs for
new uses, speeds the development of treatments for particularly aggressive oncogenic
driver mutations lacking viable treatment options, and adds valuable proteome and other
multiscale information to existing drug discovery methods. Validation studies for the top
candidates from our full drug/compound library are in progress to determine if other
compounds synergize with available KRAS G12C inhibitors, or achieve inhibition alone.
Novel designs based on mutant-specific inhibitors have also been synthesized and are also
in the process of being validated [59]. The goal of this study is to develop sophisticated
multiscale hybrid computational/experimental pipelines for precision drug discovery that
are capable of rapidly generating safe and effective putative drug candidate leads, along
with elucidating mechanistic details that may be used as a basis for further hypothesis
generation. To that end, this study validated effective drug combinations generated using
the CANDO platform for multiscale therapeutic discovery to target driver KRAS mutations
in NSCLC.
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